Rights & User Restrictions
Copyright statement: This image may be protected by copyright law. Please contact the Sterling Morton Library ABOUT section for additional information.

Rothrock, Paul E.
Roalson, Eric H.
Hipp, Andrew

The evolution of chromosome arrangements in Carex (Cyperaceae)

Date created
Sedges (Carex: Cyperaceae) exhibit remarkable agmatoploid chromosome series between and within species. This chromosomal diversity is due in large part to the structure of the holocentric chromosomes: fragments that would not be heritable in organisms with monocentric chromosomes have the potential to produce viable gametes in organisms with holocentric chromosomes. The rapid rate of chromosome evolution in the genus and high species diversification rate in the order (Cyperales Hutch., sensu Dahlgren) together suggest that chromosome evolution may play an important role in the evolution of species diversity in Carex. Yet the other genera of the Cyperaceae and their sister group, the Juncaceae, do not show the degree of chromosomal variation found in Carex, despite the fact that diffuse centromeres are a synapomorphy for the entire clade. Moreover, fission and fusion apparently account for the majority of chromosome number changes in Carex, with relatively little duplication of whole chromosomes, whereas polyploidy is relatively important in the other sedge genera. In this paper, we review the cytologic and taxonomic literature on chromosome evolution in Carex and identify unanswered questions and directions for future research. In the end, an integration of biosystematic, cytogenetic, and genomic studies across the Cyperaceae will be needed to address the question of what role chromosome evolution plays in species diversification within Carex and the Cyperaceae as a whole.
Alternate Title

Volume, Issue, Page Number
75, 1, 96-109