Bowles, Marlin L.
Apfelbaum, Stephen I.
Haney, Alan
Lehnhardt, Susan
Post, Tom

Canopy cover and groundlayer vegetation dynamics in a fire managed eastern sand savanna


Identifier
3.55300
Type
Article
Date created
2011
Abstract
Savanna vegetation is characterized by high and variable ground layer species richness regulated by functional group interactions with fire regimes and canopy cover. Frequent fire selects for C4 grasses and prairie forbs in canopy openings and C3 graminoid species and shade-adapted forbs and shrubs in canopy shade. Frequent fire also maximizes heterogeneity in partial canopy cover and species richness across the full canopy gradient. However, few studies have linked fire induced change in tree canopy cover with groundlayer vegetation dynamics in relation to this model. In 1986 and in 2007, we measured canopy cover and sampled groundlayer vegetation in 1m2 plots along 53 transects at the Tefft Savanna, a fire managed 197ha eastern sand savanna with strong canopy cover and elevation gradients. We analyzed temporal change in canopy cover and groundlayer vegetation, correlating percent change in canopy cover with change in ground layer functional groups. After 20years of burning at 3 fires/decade, elevation accounted for 62% of the variation in an NMS ordination of groundlayer vegetation. However, canopy cover, which averaged 24-86% in 2007, had a significant secondary effect on the ordination. Five vegetation types classified by TWINSPAN varied significantly in elevation and canopy cover. Woody vegetation comprised 8 of the 12 species with greatest niche breadths, and tended to predominant in woodland or forest, where tree cover averaged 50% or more. Forbs had greater richness in savanna, which averaged less than 30% canopy cover. The C3 sedge Carex pensylvanica was the dominant graminoid species under woodland canopy cover, and was co-dominant with the C4 grasses Andropogon scoparius and Sorghastrum nutans under savanna canopy cover. As in other savannas, N-fixing species sorted across shade and canopy openings, and heterogeneity among transects was maximized at mid-canopy cover. Over time, canopy cover decreased up to 50%, creating more open savanna conditions at mid to high elevations. This decrease was associated with a 20-100 % increase in species richness and was significantly correlated with increasing richness and cover of C4 grasses and summer flowering prairie and woodland forbs. These results support a canopy cover model of fire-maintained savanna vegetation, with greater abundance of C4 grasses and prairie forb species associated with lower canopy cover, greater heterogeneity at mid-canopy cover, and species richness maximized across the light gradient. They also indicate that decreasing canopy cover caused by repeated burning increases species richness and abundance of C4 and prairie forb species.
ISSN
0378-1127
Alternate Title

Volume, Issue, Page Number
262, 11, 1972-1982
Related Entities
Forest Ecology and Management (published by)