Stuart-Haëntjens, Ellen J.
Curtis, Peter S.
Fahey, Bob
Vogel, Christoph S.
Gough, Christopher M.

Net primary production of a temperate deciduous forest exhibits a threshold response to increasing disturbance severity


Identifier
3.55365
Type
Article
Date created
2015
Abstract
The global carbon (C) balance is vulnerable to disturbances that alter terrestrial C storage. Disturbances to forests occur along a continuum of severity, from low-intensity disturbance causing the mortality or defoliation of only a subset of trees to severe stand-replacing disturbance that kills all trees; yet considerable uncertainty remains in how forest production changes across gradients of disturbance intensity. We used a gradient of tree mortality in an upper Great Lakes forest ecosystem to: (1) quantify how aboveground wood net primary production (ANPP(w)) responds to a range of disturbance severities; and (2) identify mechanisms supporting ANPP(w) resistance or resilience following moderate disturbance. We found that ANPP(w) declined nonlinearly with rising disturbance severity, remaining stable until >60% of the total tree basal area senesced. As upper canopy openness increased from disturbance, greater light availability to the subcanopy enhanced the leaf-level photosynthesis and growth of this formerly light-limited canopy stratum, compensating for upper canopy production losses and a reduction in total leaf area index (LAI). As a result, whole-ecosystem production efficiency (ANPP(w)/LAI) increased with rising disturbance severity, except in plots beyond the disturbance threshold. These findings provide a mechanistic explanation for a nonlinear relationship between ANPP(w) and disturbance severity, in which the physiological and growth enhancement of undisturbed vegetation is proportional to the level of disturbance until a threshold is exceeded. Our results have important ecological and management implications, demonstrating that in some ecosystems moderate levels of disturbance minimally alter forest production.
ISSN
0012-9658
Alternate Title

Volume, Issue, Page Number
96, 9, 2478-2487
Related Entities
Ecology (published by)